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1. Introduction

The concept of a transport system, as defined by Grzywacz and 
Burnewicz [17] as well as Andrzejczak [3] is seen in this article as a 
segregated system of three subsystems: technical, organizational and 
economic-legal ones, creating a logical, internally balanced entirety, 
enabling to achieve a specific goal. This makes it possible to define 
the analyzed enterprise as the transport system, and assume the imple-
mentation of transport tasks as its operating goal.

Transport systems can be analyzed as multi-state sequences of 
subsequent planned and unplanned maintenance activities carried out 
by the transport system operator [27]. The construction of the models 
that describe them and allows the prediction of the operating state of 
the object used, allows planning of the maintenance strategy and con-
trol of the readiness of the machine [9, 21] and vehicles fleet [13, 26] 
etc. Modelling the functioning of technical objects using deterministic 
models is not always possible because the results (implementations) 
are affected by external disturbances (random factors), which make it 
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Przedsiębiorstwa transportowe mogą być traktowane jako wyodrębniony pod względem  technicznym, organizacyjnym, ekono-
micznym i prawnym system transportowy. Zachowanie jakości i ciągłości realizacji zleceń przewozowych wymaga wysokiego po-
ziomu gotowości pojazdów oraz personelu (szczególnie kierowców). Kontrolowanie i sterowanie realizowanymi zadaniami wspie-
rane jest modelami matematycznymi, umożliwiającymi ocenę i określenie strategii dotyczącej podejmowanych działań. Wsparcie 
procesów zarządzania polega głównie na analizie sekwencji kolejnych, realizowanych czynności (stanów). W wielu przypadkach 
taki ciąg czynności jest modelowany za pomocą procesów stochastycznych, spełniających własność Markowa. Ich klasyczne 
zastosowanie możliwe jest tylko w przypadku, gdy warunkowe rozkłady prawdopodobieństwa przyszłych stanów są określone 
wyłącznie przez bieżący stan eksploatacyjny. Identyfikacja takiego procesu stochastycznego polega głównie na wyznaczeniu ma-
cierzy prawdopodobieństw przejść międzystanowych. Niestety w wielu przypadkach analizowane ciągi czynności nie spełniają 
własności Markowa. Dodatkowo, na wystąpienie kolejnego stanu wpływa długość interwału czasowego pozostania systemu w 
określonym stanie eksploatacyjnym. W artykule przedstawiono metodę konstrukcji macierzy prawdopodobieństw przejść pomię-
dzy stanami eksploatacyjnymi. Wartości tej macierzy zależą od czasu przebywania obiektu w danym stanie. Celem artykułu było 
zaprezentowanie alternatywnej metody estymacji parametrów tej macierzy w sytuacji, gdy badany szereg nie spełnia własności 
Markowa. Wykorzystano w tym celu regresję logistyczną. 
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impossible to accurately predict subsequent states. In such cases, we 
model the behaviour of technical systems using probabilistic meth-
ods, in particular stochastic processes. An important class of stochas-
tic processes are Markov processes. Some possibilities of applications 
of these processes are presented in papers [7, 24]. The essential con-
dition of their use is satisfying Markov property: the future does not 
depend on the past when the present is known. Many analyzes assume 
a priori that the time series satisfies this property and its verification 
is omitted [55]. Only a few authors indicate the need for checking it 
[53] and eliminate cases that did not achieve this assumption [47]. An 
alternative for the systems that do not satisfy Markov property are 
classic reliability methods, allowing to determine empirical charac-
teristics such as: renewal stream, renewal function, time to the next 
defect or intensity of the renewal stream [6, 14, 35] and calculating 
the main system assessment measures based on them [15, 23, 42]. In 
the literature, as part of similar studies, various models are presented 
[30, 43], including semi-Markov [7, 24] and also those using artificial 
neural networks [10, 33], factorization algorithm [31], fault trees [52] 
or reliability models [36, 42].

In many publications, the time of remaining in a particular op-
erating state is not taken into account. The heterogeneity of the time 
interval between successive states may also cause non-fulfilment of 
Markov property. In this article, the logistic regression was used to es-
timate the conditional probabilities of the test object remaining in the 
individual operational states [49]. The logistic regression describes 
the relationship between a qualitative variable and one or more pre-
dictive variables [25, 46]. In the literature, logistic regression is used 
in medicine [5, 44], in computed tomography [46], to identify techni-
cal systems [25], in the area of corporate finance [39, 54], banking [1, 
34] broadly understood investments [12, 29] and is used to assess the 
level of risk [2, 8, 45], in the social and demographic research [4, 41] 
and others [25, 40]. Regarding transport systems, logistic regression 
models are proposed primarily for assessing the road dangers dem-
onstrated by the road accidents [18, 37], making the choices of routs 
in the transport network [32, 49] or analyzing the impact of selected 
factors on the implementation of transport processes [38, 48].

The paper shows the existence of a relationship between the dura-
tion of the operational state and the value of the probability of transi-
tion to the next state. In order to analyze the problem thoroughly and 
in detail, the introduction was firstly made, presenting the mathemati-
cal methods referred to in the article. The second chapter presents 
definitions regarding Markov chains and how to verify Markov prop-
erty. The third chapter presents the method of estimating the transi-
tion probability matrix using logistic regression. Then, an example of 
the implementation of the proposed method using empirical data for 
a selected means of transport, carrying out transport tasks under the 
transport system (enterprise), has been presented. In the final stage, 
the results obtained are discussed, summaries of the analyzes carried 
out and directions for further research are indicated.

2. Markov chains

The state of an object is defined by its characteristic feature, a 
technical property that assigns it to a given operating system [50]. It is 
a vector whose components are physical values describing the object 
from the point of view of a given test [28]. In the literature, the state 
of a technical object is defined as the result of one and only one event 
in a series of experiments from a finite or countable set of pairs of 
mutually exclusive events [11, 54]. We use probability calculus tools 
and mathematical statistics to analyze technical systems [22, 53]. Let 
( ), , PΩ 

 
be a  probabilistic space, N - a set of natural numbers,  

S - the space of the states of the analyzed phenomenon.

Definition 1 A sequence { }t t NX ∈  of random variables 
:tX SΩ→   for any t N∈  is called a stochastic process in discrete 

time [51, 54].
In the paper, we analyze the operating states in which the vehicles 

remain. The S  set of operating states is a set of values of the sto-
chastic process { }t t NX ∈ . At any    t N∈  time, the object is in one of 
the possible states and ( )t tX xω = , i.e. in the event of a ω  random 
event occurring at the t  moment, the system is in a state tx S∈  . In 
our research, we assume that the S  set of states is a finite set and 

{ }1 2, , , kS s s s= … , k N∈ , 2 k≤ < ∞ . The ( ) ( )t i iP X s p t= =  val-
ue means the probability that the system at a moment t N∈  is in a 

state is S∈ , 1 i k≤ ≤ , and ( )
1

 1
k

i
i

p t
=

=∑ .

Definition 2 A stochastic process { }t t NX ∈  in discrete time is called 

a Markov chain if for each n N∈ , of any moments 1 2, , , nt t t N… ∈  

satisfying the condition 1 2 nt t t< <…< , and any 1 2,  , ,   ,nx x x S… ∈  
the equality occurs [26, 47]:

( ) ( )1 2 1 11 2 1 1 , , , 
n n n n nt n t n t n t t n t nP X x X x X x X x P X x X x

− − −− − −= = = … = = = =
	

  (1)

From the definition of the Markov chain it follows that the con-
ditional distribution of the  random variable nX , for a given  values 

0 1 1
, , , 

nt t tX X X
−

…  depends only on the last known  value 
1ntX
−

. It is 
usually assumed that the it  and 1it +  intervals are equal [16]. Below 
we assume that nt n N= ∈ . If { }t t NX ∈  is a heterogeneous Markov 
chain, then for any t N∈  and 1 ,i j k≤ ≤ , the value:

	 ( ) ( )1t j t i ijP X s X s p t−= = = 	 (2)

we call the probability of transition from is  state at the moment 1t −  
to the js  state at moment t . Therefore, for the chains satisfying the 
Markov property (1), the conditional probability distributions of the 
future process states are determined only by its current state and mo-
ment t , regardless of the past (they are conditionally independent of 

the past states). The matrix ( ) ( )
1 ,ij i j k

P t p t
≤ ≤

 =    satisfying the con-

dition ( )
1

1
k

ij
j

p t
=

=∑  for t N∈  and 1 i k≤ ≤  is called the matrix of 

probabilities of transitions in one step at the moment t  [7, 47, 51].

Definition 3 The Markov chain { }t t NX ∈  is a homogeneous 
Markov chain, if the ( )ijp t  probabilities of transition do not depend 
on the moment t N∈ .

Thus, for a homogeneous Markov chain  ( )ij ijp t p=  for 

1 ,i j k≤ ≤  and any moment t N∈ . The matrix 
1 ,ij i j k

P p
≤ ≤

 =    

satisfying the condition 
1

1
k

ij
j

p
=

=∑ , 1 i k≤ ≤  we call the transition 

probability matrix in one step. For a homogeneous Markov chain, the 
probabilities of transition from a is  state at a t  moment to the js  
state at the t n+  moment is determined using the formula [13, 24]:

	 ( ) ( )n
t n j t i ijP X s X s p+ = = = 	 (3)



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol. 22, No. 2, 2020194

Science and Technology

where ( )
1 ,

n n
ij

i j k
p P

≤ ≤

  =  
, n N∈  is the matrix of probability of tran-

sition in n  steps.

Definition 4 If { } t t NX ∈  is a homogeneous Markov chain and 
there is a distribution π π π π= …( )1 2, , , k  where π i ≥ 0 ,  1 i k≤ ≤   

and 
i

k
i

=
∑ =

1
1π  satisfying the equation:

	 π πP = 	 (4)

then the distribution π  is called the stationary distribution of the ho-
mogeneous Markov chain.

The stationary property means that if at some n N∈  moment the 
chain reaches a stationary distribution, then for each subsequent mo-
ment greater than n  the distribution will remain the same. We deter-
mine the stationary distribution by solving the system of equations 
[16, 22]:

	
j

k
j ij ip

=
∑ ⋅ =

1
π π �� 	 (5)

	
i

k
i

=
∑ =

1
1π 	 (6)

and π i ≥ 0  for 1 i k≤ ≤ .

An important role in the studying of processes using Markov 
chains is played by its boundary properties, especially the boundary 
probability ( )jp n  and ( )n

ijp  at  ,n→∞  which describe the probabil-
istic behaviour of the process after a long time [16, 22].

Theorem 1 (ergodic) Let { } t t NX ∈  be a homogeneous Markov 
chain with a finite number of states k < ∞  { }( )# # : ik S i s S= = ∈ , 
then:

a vector a)	 π π π π= …( )1 2, , , k  exists such that π i ≥ 0  for 1 i k≤ ≤  

and 
i

k
i

=
∑ =

1
1π ;

for any b)	 1 ,i j k≤ ≤

	 π j
n ij

np=
→∞

( )lim  ;	

πc)	  vector is the solution to the equation (6).

Below, the method of estimating the transition probability matrix 
for the homogeneous Markov chain and the way of verifying Markov 
property will be presented. Let { }0 t t nx ≤ ≤  be the realization of the 
Markov chain. The value { }# : , 0i t in t x s t n= = ≤ ≤  means the 

number of moments for which the system remained in the state is  for 

1 i k≤ ≤ , where 
1

k
i

i
n n

=
=∑ , while the value 

{ }1# : , , 0 1ij t i t jn t x s x s t n+= = = ≤ ≤ −  means the number of transi-

tions from the  state is  to the  state js  for 1 ,i j k≤ ≤  and 

1

k
ij i

j
n n

=
=∑  .

Assuming that the Markov property is satisfied, we esti-
mate the transition probability matrix. The estimator of the 
transition probability from state is  to state js  we determine  

from the formula ˆ ij
ij

i

n
p

n
=   for 1 ,i j k≤ ≤ .

We use a 2χ  goodness of fit test to verify Markov property. At the 
significance level α� ,α ∈( )0 1  we create a working hypothesis:

( ) ( )0 1 2 1: , t t t t tH P X x X y X z P X x X y− − −= = = = = =  (the  

chain { } t t NX ∈  satisfies Markov property)
and an alternative hypothesis:

( ) ( )1 1 2 1: , t t t t tH P X x X y X z P X x X y− − −= = = ≠ = =  (the 

chain { } t t NX ∈  does not satisfy Markov property),
where , ,x y z S∈ . As a measure of discrepancy between 
( )1 2, t t tP X x X y X z− −= = =  and ( )1t tP X x X y−= =  distribu-

tions we choose the test statistics:

	
( )22

1 1 1

ˆ

ˆ

k k k ijv ij jv
e

ij jvi j v

n n p

n p
χ

= = =

−
= ∑∑∑  	 (7)

which has a 2χ  distribution with 3k  degrees of freedom.

The value { }1 2# : , , , 0 2ijv t i t j t vn t x s x s x s t n+ += = = = ≤ ≤ −  

means the number of transitions from  state is  to state js  and next to 
state vs  for 1 , ,i j v k≤ ≤ . From the tables for the 2χ  distribution 

with 3k  degrees of freedom we determine the quantile of order 1 α− α, 

which we denote as χ α2 31−( ),k . If χ χ αe k2 2 31< −( ), , then at the 

significance level α there are no grounds for rejecting the working 
hypothesis 0H , so we assume that the chain { } t t NX ∈  satisfies Mark-

ov property. On the other hand, if χ χ αe k2 2 31≥ −( ), , then at the sig-

nificance level α we reject the working hypothesis 0H   in favour of 
the alternative hypothesis, thus the chain { } t t NX ∈  does not satisfy 
Markov property.

3. Logistic regression

In many cases, the  stochastic process { } t t NX ∈  does not satisfy 
Markov property. The realization of the process { } t t NX ∈  depends on 
additional factors. In transport and logistics systems, the time of re-
maining in a specific state directly affects the probability of transition 
to other states. Below, the authors used logistic regression to define 
the transition probability matrix, which depends on the time the object 
remains in a given state. In the case under consideration a random 
variable , tX t N∈  describing the state of the system can get k  pos-
sible realizations. Because we are considering moments for which the 
system state changes, so if at the moment t N∈  the system was in a 
state is S∈ , then in the moment t +τ  the system may take the states 
{ }\ iS s  (a random variable Xt+τ  may get 1k −  possible realiza-

tions). Determination of the transition probability is possible thanks to 
polynomial logistic regression [19, 25, 44, 46]. One of the levels 
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should be taken as a reference. For each state is S∈ , 1 i k≤ ≤  we 
determine the probabilities of transition to the other states:

	 P X s X s pt j t i ij+ = =( ) = ( )τ τ ,	 (8)

where t N,τ ∈  and { }\j is S s∈ . From the set { } \ iS s , we select the 

reference state { }\q is S s∈  and determine the logarithms of chances 
for the remaining states:

	 ln
P X s X s

P X s X s

t j t i

t q t i
ij ij

+

+

= =( )
= =( )

= +
τ

τ

β β τ0 1 	 (9)

for s S s sj i q∈ { }\ , . The values of structural parameters in the model 

(9) are determined using the maximum likelihood method [20, 25, 
49]. Wald’s test is used to assess the significance of model parame-
ters.

We determine transition probabilities for states s S s sj i q∈ { }\ ,  
using the formula:

	 p e

e
ij
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v i v q

ij ij

iv iv
τ

β β τ

β β τ
( ) =

+

+

+

≤ ≤
≠ ≠

∑

0 1

0 1
1

1
,
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while for the reference state qs  the probability is:

	

p
e
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v k
v i v q

iv iv
τ

β β τ
( ) =

+ +
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≠ ≠

∑
1

1
0 1

1
,
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From the formulas (10) - (11) we obtain that the logarithm of the 
chances ratio for any two states s s S s sj v i q, \ ,∈ { }  is equal to:

ln
P X s X s

P X s X s
ln

p
p

t j t i

t v t i

ij

iv
ij iv

+

+

= =( )
= =( )

=
( )
( )

= −(τ

τ

τ

τ
β β0 0 )) + −( )β β τij iv

1 1 .(12)

4. Estimation of transition probability matrix for the 
selected means of transport

The subject of the study was a Belgian distribution department 
operating for the benefit of hypermarket chains. Transport services are 
carried out every day, 24 hours a day, which is why it is important to 
schedule transport properly, taking into account the availability of em-
ployed staff (especially drivers), as well as the readiness of vehicles.

The study used data from the company’s fleet management sys-
tem that integrates, processes and archives readings from the vehi-
cle’s GPS transmitter, tachograph, CAN (Controller Area Network) 
and on-board computer. It allows to obtain data on the driver and the 
vehicle in real time, allows tracking of the position and movement 

of cars, visualization of the location of vehicles and trailers on the 
map, monitoring of driving and resting times, etc. The information 
concerned 69 Iveco Stralis EEV 460 trucks. The collected data was 
segregated and 10 operational states realized by heavy goods vehicles 
were analyzed. These activities are detailed in tab. 1.

The study presented in the article was carried out for one ran-
domly selected vehicle. Markov property were checked. The 2χ  
test was used for this purpose. The test statistics was 2672.74 , and 

16  2.2*10p value −− = . This means that at the significance level 
0.001α = , the working hypothesis should be rejected in favour of 

the alternative hypothesis, therefore the analyzed stochastic process 
does not satisfy Markov property. Nevertheless, the transition prob-
ability matrix of realization of  the process { }1t t nX ≤ ≤ , 6822n =  was 
estimated (for comparison purposes), which is presented graphically 
in Fig. 1, while the values of this matrix are presented in Table 2.

Fig. 1. Graph of the interstate transitions according to Markov chain

By solving equation (4), the boundary probabilities were estimat-
ed. The values of these probabilities are presented in Tab. 3.

Because Markov property was not satisfied for the analyzed data, 
the parameters of the transition probability matrix were estimated us-
ing the polynomial logistic regression model. The impact of the time 

Table 1.	 Operating states highlighted in the study

No. Name of operational state

S1 Availability

S2 Driving 

S3 Manipulation 

S4 Repair

S5 Maintenance

S6 Parking

S7 Layover

S8 Off-loading

S9 Refuelling

S10 Loading
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Table 2.	 Matrix of transition probabilities for the Markov chain

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 0 0.392 0.002 0.002 0.012 0.032 0.113 0.009 0.007 0.431

S2 0.060 0 0.128 0.003 0.015 0.015 0.142 0.453 0.022 0.162

S3 0.065 0.274 0 0.003 0.009 0.029 0.085 0.294 0 0.241

S4 0.456 0.246 0.053 0 0.035 0 0.105 0 0 0.105

S5 0.056 0.416 0.011 0.034 0 0.146 0.180 0.090 0 0.067

S6 0.433 0.264 0.082 0 0.014 0 0.111 0.005 0.005 0.087

S7 0.084 0.456 0.003 0.044 0.027 0.103 0 0.074 0.001 0.208

S8 0.062 0.510 0.008 0.009 0.005 0.044 0.097 0 0.019 0.247
S9 0.035 0.163 0 0.012 0.035 0.035 0.151 0.442 0 0.128

S10 0.004 0.735 0.008 0 0.012 0.001 0.064 0.173 0.003 0

Table 3.	 The values of boundary probabilities for the Markov chain

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

π i 0.064 0.337 0.050 0.008 0.013 0.031 0.099 0.212 0.013 0.173

Fig. 2. Relationship between the transition probability from Availability state and its duration

Fig. 3. Relationship between the transition probability from Driving state and its duration
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Fig. 4. Relationship between the transition probability from Parking state and its duration

Fig. 5. Relationship between the transition probability from Layover state and its duration

Fig. 6. Relationship between the transition probability from Refuelling state and its duration
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while remaining in a specific operating state on the probability of 
transition to other states was investigated. It was assumed that the 
probability at the moment t τ+ τ  is a value conditionally dependent on 
the state in which the object was at the moment t  and the duration 
length τ, as well as that after a time τ the system does not return to it. 
For each state, 8 logistic regression equations (9) were determined, 
which describe the relationships for nine possible transitions. The sig-
nificance of structural parameters was examined by Wald test. As a 
result of using polynomial logistic regression for each system state  
a transition probability matrix was obtained, which depends on the 
duration time τ.

Then, the graphs were drawn illustrating the change in the transi-
tion probabilities depending on the duration time τ in a given opera-
tional state. For the selected states: availability, driving, parking, layo-
ver, refuelling, the relationships between the transition probabilities 
and the duration time are shown on Fig. 2 - Fig. 6.

The above graphs show the dependence of the transition prob-
ability value from a given operational state to the next, depending on 
the time the vehicle spends in it. From the graphs it is possible to see 
that the values of these probabilities are not constant, which shows 
impossibility of the use of the classical approach when estimating the 
transition probability matrix as for the Markov chain. The approach 
proposed by the authors shows how to determine the matrix of transi-
tion probabilities for the case when for a specific state the duration 
time significantly affects the values of the elements of this matrix. 
The variability of the transition probabilities is justified and reflects 
the specificity of the implementation of transport processes, which are 
partly determined by legal regulations concerning, for example, the 
driver’s working time, as well as deadlines resulting from the operat-
ing strategy implemented in the company, regulating the periods of 
repairs and inspections.

The solutions presented are helpful in addition to developing a 
method that allows assessing the readiness of the system to carry out 
transport tasks. Operating states can be classified as states of suit-
ability and unsuitability, and it is possible to determine the technical 
readiness factor as the sum of appropriate probabilities of reliability 
states.

5. Conclusion

The article estimates the matrix of transition probabilities to the 
identified operating states in which the tested vehicle was. The use 
of Markov chains is popular in such estimates, which requires the 
condition of the lack of memory of the analyzed process to be met. In 
the presented case this property was not fulfilled. In addition, it was 
shown that the probability of transition to a given operating state is 
conditionally dependent on the state in which the object was and the 
length of time spent in it. Therefore, an alternative method was pro-
posed for their estimation. For this purpose, a polynomial logistic re-
gression model was used. The transition probabilities were obtained, 
whose values for a given state differed depending on the length of 
time the vehicle stayed in the previous state.

The results obtained were compared with the values obtained ac-
cording to the Markov chain - for which they are constant - showing 
that using so calculated transition probability matrix, when the Mark-
ov property is not met, may lead to the erroneous conclusions.

The proposed logistic regression model allows to conduct short-
term forecasts regarding the implementation of the transport process. 
The assessment of the probability transition depending on previously 
carried out activities supports the process of scheduling transport 
tasks, as well as planning in the field of vehicle maintenance.

As part of further research, it is worth extending the proposed 
method by determining the values of estimators and assessing the 
boundary probabilities of transitions for individual states over a long 
period of time. This will allow a comprehensive evaluation of the sys-
tem’s functioning, as well as determining the level of readiness to 
carry out transport tasks. The division of operational states into states 
of suitableness and unsuitableness will allow to calculate the technical 
readiness coefficient as the sum of the respective boundary probabili-
ties of the reliability states. The presented solution can also be used 
for modelling the driving cycles of heavy vehicles, which directly re-
flect the real operating conditions of the engine or components on the 
chassis dynamometer.
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